Coding phyton 2 library numpy
numpy as np
def GENP(A, b):
'''
Gaussian elimination with no pivoting.
% input: A is an n x n nonsingular matrix
% b is an n x 1 vector
% output: x is the solution of Ax=b.
% post-condition: A and b have been modified.
'''
n = len(A)
if b.size != n:
raise ValueError("Invalid argument: incompatible sizes between A & b.", b.size, n)
for pivot_row in xrange(n-1):
for row in xrange(pivot_row+1, n):
multiplier = A[row][pivot_row]/A[pivot_row][pivot_row]
#the only one in this column since the rest are zero
A[row][pivot_row] = multiplier
for col in xrange(pivot_row + 1, n):
A[row][col] = A[row][col] - multiplier*A[pivot_row][col]
#Equation solution column
b[row] = b[row] - multiplier*b[pivot_row]
print A
print b
x = np.zeros(n)
k = n-1
x[k] = b[k]/A[k,k]
while k >= 0:
x[k] = (b[k] - np.dot(A[k,k+1:],x[k+1:]))/A[k,k]
k = k-1
return x
def GEPP(A, b):
'''
Gaussian elimination with partial pivoting.
% input: A is an n x n nonsingular matrix
% b is an n x 1 vector
% output: x is the solution of Ax=b.
% post-condition: A and b have been modified.
'''
n = len(A)
if b.size != n:
raise ValueError("Invalid argument: incompatible sizes between A & b.", b.size, n)
# k represents the current pivot row. Since GE traverses the matrix in the upper
# right triangle, we also use k for indicating the k-th diagonal column index.
for k in xrange(n-1):
#Choose largest pivot element below (and including) k
maxindex = abs(A[k:,k]).argmax() + k
if A[maxindex, k] == 0:
raise ValueError("Matrix is singular.")
#Swap rows
if maxindex != k:
A[[k,maxindex]] = A[[maxindex, k]]
b[[k,maxindex]] = b[[maxindex, k]]
for row in xrange(k+1, n):
multiplier = A[row][k]/A[k][k]
#the only one in this column since the rest are zero
A[row][k] = multiplier
for col in xrange(k + 1, n):
A[row][col] = A[row][col] - multiplier*A[k][col]
#Equation solution column
b[row] = b[row] - multiplier*b[k]
print A
print b
x = np.zeros(n)
k = n-1
x[k] = b[k]/A[k,k]
while k >= 0:
x[k] = (b[k] - np.dot(A[k,k+1:],x[k+1:]))/A[k,k]
k = k-1
return x
if __name__ == "__main__":
A = np.array([[1.,-1.,1.,-1.],[1.,0.,0.,0.],[1.,1.,1.,1.],[1.,2.,4.,8.]])
b = np.array([[14.],[4.],[2.],[2.]])
print GENP(np.copy(A), np.copy(b))
print GEPP(A,b)
0 komentar:
Posting Komentar